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Abstract
We study the conduction of heat across a narrow solid strip trapped by an
external potential and in contact with its own liquid. Structural changes,
consisting of addition and deletion of crystal layers in the trapped solid, are
produced by altering the depth of the confining potential. Nonequilibrium
molecular dynamics simulations and, wherever possible, simple analytical
calculations are used to obtain the thermal resistance in the liquid, solid and
interfacial regions (Kapitza or contact resistance). We show that these layering
transitions are accompanied by sharp jumps in the contact thermal resistance.
Dislocations, if present, are shown to increase the thermal resistance of the strip
drastically.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The transport of heat through small and low-dimensional systems has enormous significance
in the context of designing useful nanostructures [1]. Recently, it was shown [2] that a
narrow solid strip trapped by an external potential [3–6] and surrounded by its own fluid
relieves mechanical stress via the ejection or absorption of single solid layers [7–9] to and
from the fluid. The trapping potential introduces large energy barriers for interfacial capillary
fluctuations, thereby forcing the solid–liquid interfaces on either side of the solid region to
remain flat. The small size of the solid also inhibits the creation of defects since the associated
inhomogeneous elastic displacement fields need to relax to zero quickly at the boundaries,
making the elastic energy cost for producing equilibrium defects prohibitively large. Therefore
the only energetically favourable fluctuations are those that involve the transfer of complete
layers which cause at most a homogeneous strain in the solid [2]. Such layering transitions
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Figure 1. (a) A schematic diagram of the system showing the liquid and solid regions produced
by the external chemical potential of depth −μ. The various dimensions mentioned in the text are
also marked in the figure. (b) Plot of the temperature profile kBT (y) and fourth moment of velocity
m

√〈v4(y)〉/8 at μ = 13. (c) The local density profile along the y-direction at μ = 13. (d) The
isothermal compressibility κT as a function of y at μ = 13. The compressibility shows strong peaks
near the interfaces. Due to the small size, interfacial enhancement of the compressibility permeates
right through the whole of the solid region. In (c) and (d) lines are guides to eye.

were shown to affect the sound absorption properties of the trapped solid in rather interesting
ways [2]. What effect, if any, do such layering transitions have for the transfer of heat?

Heat transport across model liquid–solid interfaces has been studied in three dimensions
for particles with Lennard-Jones interactions in [10] along the liquid–solid coexistence line.
The dependence of the Kapitza (interfacial) resistance [11, 12] on the wetting properties of the
equilibrium interface was the focus of this study. It was shown that a larger density jump at the
interface causes higher interfacial thermal resistance. In this letter, we use a nonequilibrium
molecular dynamics simulation to investigate heat conduction through a trapped solid (in two
dimensions) as it undergoes layering transitions as a response to changes in the depth of the
trapping potential. Apart from the layering transition reported in [2], we find another mode of
structural readjustment, namely an increase in the number of atoms in the lattice planes parallel
to the interface by the spontaneous generation and annihilation of dislocation pairs. The heat
conductance, in our study, shows strong signatures of both of these structural transformations
of the trapped solid.

2. System and simulation details

We consider a two-dimensional (2D) system of N atoms of average density ρ = N/A within
a rectangular box of area A = Lx × L y (figure 1(a)). The applied potential, φ(�r) = −μ for
�r ∈ S which goes to zero with a hyperbolic tangent profile of width δφ elsewhere, enhances
the density (ρs > ρ) in the central region S of area As = Lx × Ls, ultimately leading it to a
solid-like phase. TL and TR > TL are the temperatures of the two heat reservoirs in contact with
the liquid regions at either end.
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A large number of recent studies in lower dimensions has shown that heat conductivity
is, in fact, divergent as a function of system size [13–15]. Thus it is more sensible to
directly calculate the heat current jE(>0) flowing from the high to the low temperature, or
the conductance of the system G = jE/�T (or resistance R = 1/G), �T (>0) being the
temperature difference, rather than the heat conductivity.

We report results for 1200 particles interacting via the soft disc potential u(ri j ) = 1/r 12
i j

taken within an area of 24 × 60. In the absence of any external potential, a 2D system of soft
discs at this density ρ ≈ 0.83 remains in the fluid phase. The length and the energy scales are
set by the soft disc diameter d = 1, and temperature kBT , respectively, while the timescale is
set by τs = √

md2/kBT . The unit of energy flux jE is thus (kBT/τsd). The units of resistance
and conductance are τsd and (τsd)−1 respectively. Periodic boundary conditions are applied in
the x-direction. We use the standard velocity Verlet scheme of molecular dynamics (MD) [16]
with equal time update of time-step δt , except when the particles collide with the ‘hard-walled’
heat reservoirs at y = 0 and L y . We treat the collision between the particles and the reservoir
as that between a hard disc of unit diameter colliding against a hard, structureless wall. If the
time, τc, of the next collision with any of the two reservoirs at either end is smaller than δt , the
usual update time-step of the MD simulation, we update the system with τc. During collisions
with the walls Maxwell boundary conditions are imposed to simulate the velocity of an atom
emerging out of a reservoir at temperatures TL (at y = 0) or TR (at y = L y) [14]:

f (�v) = 1√
2π

(
m

kBTW

)3/2

|vy | exp

(
− m�v2

2kBTW

)
(1)

where TW is the temperature (TL or TR) of the wall on which the collision occurs. During each
collision, energy is exchanged between the system and the bath. In the steady state, the average
heat current flowing through the system can, therefore, be found easily by computing the net
heat loss from the system to the two baths (say QL and QR respectively) during a large time
interval τ . The steady-state heat current is given by 〈J 〉 = limτ→∞ QL/τ = − limτ→∞ QR/τ .
In the steady state the heat current (the heat flux density integrated over x) is independent
of y. This is a requirement coming from current conservation. For a homogeneous system,
jE = 〈J 〉/Lx . However, if the system has inhomogeneities then the flux density itself can have
a spatial dependence, and in general we can have jE = jE(x, y). In our simulations we have
looked at jE(x, 0) and jE(x, L y).

3. Results

The system is first allowed to reach the steady state in a temperature gradient with the two walls
at right and left being maintained at temperatures of kBTR = 1.5 and kBTL = 0.5 such that the
current density integrated over the whole x-range is the same at all y. The local temperature
can be defined as kBT (y) = 〈1/2 mv2(y)〉, where the averaging is done locally over strips of
width d = 1 and length Lx . If local thermal equilibrium (LTE) is maintained, we should have
〈v4(y)〉 = 8(kBT (y)/m)2. We find kBT (y) and 〈v4(y)〉 as a function of distance y from the
cold to the hot reservoir (figure 1(b)). From figure 1(b) it is evident that the temperature profile
is almost linear in the single-phase regions, with a sharp increase near the interfaces, and LTE
is approximately valid in all regions. With increased μ, the temperature difference between the
edges of the solid region decreases, indicating an enhancement of the heat conductance within
the solid. The temperature jumps at the interfaces are a measure of the Kapitza or contact
resistance (RK) [12], defined as

RK = �T

jE
, (2)
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Figure 2. (a) The plot of the Kapitza resistance, RK, expressed in units of τsd, as a function of
the potential depth μ, shows a jump at the layering transition. (b) Plot of the thermal conductance
of the solid region, Gs (in units of (τsd)−1) as a function of μ. The points denote simulation data
and the solid line a free-volume-type calculation of heat conductance [Gs]fv. The inset shows the
corresponding change in the solid density ρsd2.

where �T is the difference in temperature across the interface. The Kapitza resistance
increases with increasing trapping potential. It is evident that the interfaces are the regions
of the highest resistance in the system. This large resistance can be traced back to large density
mismatch at the contact of two phases. In figure 1(c) we plot the local density profile ρ(y)d2.
The trapping region shows large density corresponding to the solid. Also the colder liquid
near the reservoir on the left shows a larger density than the hotter liquid near the one on the
right. In figure 1(d) we plot the local compressibility κT (y) defined via κT = ρ−2(∂ρ/∂μ)T .
Surprisingly, the compressibility of the interfaces is very large, making the narrow solid region
also unusually compressible, pointing to the presence of large local number fluctuation.

In figure 2(a) we have plotted the Kapitza resistance RK across the solid–liquid interface,
averaged over the two interfaces, as a function of the strength of the external potential μ. The
inset of figure 2(a) shows the heat flux through the system as a function of μ. As μ increases,
the atoms from the surrounding liquid get attracted into the potential well and the density of the
liquid becomes lower. The density mismatch at the solid–liquid interface therefore increases
progressively. This figure shows a fairly sharp increase in RK as well as a sharp decrease in
current density jE near μ = 8 and 12. As we will see later, these are the μ-values at which the
solid undergoes two types of layering transitions.

In figure 2(b) we show the heat conductance in the solid region Gs as a function of strength
of the trapping potential μ. The inset in figure 2(b) shows the change in the averaged density
of the solid region ρsd2. The thick solid line in figure 2(b) is an analytical estimate obtained
from a free-volume-type calculation [17] to be discussed in the next section. The ρsd2–μ

plot shows clear staircase-like sharp increases near the same values of μ (≈8 and 12) where
sharp changes in thermal conductance occur. With increase in the strength of the trapping
potential, we observe two modes of density enhancement. (A) A whole layer of particles enters
to increase the number of lattice planes in the y-direction. This happens, for example, as μ is
increased from 7 to 8. Thus in this mode the separation of lattice planes parallel to the liquid–
solid interface decreases (see figure 3(a)). (B) Each of the lattice planes parallel to the interface
grows by an atom, thereby decreasing the interatomic separation within each lattice plane. This
happens, for example, as one increases μ from 10 to 12 (see figure 3(c)). These two modes of
density fluctuations leave their signatures by enhancing the heat conductance Gs, the effect of
(A) being more pronounced than that of (B).

With increase in μ, these two modes alternate one after another, allowing the system
to release extra stress developed due to particle inclusion in one direction in one cycle, by
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Figure 3. Overlapped density plot of 500 configurations in the region trapped by external potential
μ. (a) A 23 × 23 triangular lattice solid formed from a 23 × 22 triangular lattice as the potential
is increased from μ = 7 to 8. (b) Local density peaks hop in the x-direction to incorporate
>23 particles in lattice planes in response to the increased potential μ = 11. (c) A 24 × 23
triangular lattice solid at μ = 12. Notice the increase in particle numbers in the lattice planes.
(d) Configuration obtained after 1.5 × 104δt as a 24 × 23 steady-state solid at μ = 16 is quenched
to μ = 24. This shows a dislocation pair—a 23-layered region trapped in between a 24-layered
solid. At steady state (after a time 105δt), dislocations annihilate to produce a 24 × 24 triangular
lattice solid. Colour code: blue (dark): low density; red (light): high density.

inclusion of particles in the perpendicular direction in the next cycle. Finally, at large enough μ

the density of the solid region saturates, ending the cycles. It is also interesting to observe how
the particles accommodate themselves going from figures 3(a)–(d). We find strained triangular
solids with 23×23, 24×23 and 24×24 unit cells at μ = 8, 12 and 24 respectively (see figure 3).
In the intermediate configurations one observes metastable dislocation pairs (figure 3(d)) and
peaks in the local particle density which correspond to a few particles rapidly oscillating
between two neighbouring positions (figure 3(b)) in order to maintain commensurability. Such
rapid, localized, particle fluctuations may be observable in experiments.

The layering transition in the solid by process (A) occurs via metastable dislocation
formation and annihilation by incorporating particles from the liquid region. The kinematics
of dislocation generation, transport and decay is controlled by diffusion, which is a very slow
process [7] in a solid compared to particle collision and kinetic energy transfer times. Thus
it is possible for a system with metastable dislocation pairs to reach an effective thermal
steady state. Figure 3(d) shows overlapped configurations of the solid region containing a
dislocation–antidislocation pair, as the system is quenched from μ = 16 to 24. The overlapped
configurations are separated by time 100δt and collected after a time of 1.5 × 104δt after the
quench. At this stage the system is in a metastable state though, at the same time, maintaining
LTE, which we check by computing 〈v4(y)〉 and kBT (y) locally. This gives a heat conductance
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Gs = 2.29 (τsd)−1. After a further wait for 105δt , the dislocations get annihilated. At this
stage the whole solid region is transformed into an equilibrium 24 × 24-triangular lattice. On
measuring the heat conductance now, we obtain Gs = 3.53 (τsd)−1. Thus with the annihilation
of a single dislocation pair the conductance of the solid rises by about 54%! Metastable
configurations with dislocation pairs, therefore, have strikingly different thermal properties in
this small system. Note that in the present system, configurations containing dislocations are
always metastable since dislocations are either annihilated or are lost at the interface [2].

4. Free-volume theory

Finally, we provide a brief sketch of an approximate theoretical approach for calculating heat
conductance within the solid region. A detailed treatment of this approach is available in [17].
The continuity of the energy density can be utilized to obtain an exact expression for the αth
component of the heat flux density,

jα(r) = j K
α (r) + jU

α (r)

=
∑

i

δ(r − ri )hi vα
i + 1

2

∑

i, j 
=i

θ(xα
i − xα)

∏

ν 
=α

δ(xν − xν
i ) f β

i j (v
β

i + v
β

j ).

(3)

Here θ(x) is the Heaviside step function, δ(· · ·) is a Dirac delta function, hi = mv2
i /2+φ(ri )+∑

i> j u(ri j), φ(ri ) is an onsite potential and u(ri j) is interparticle interaction. The first term
in equation (3), j K

α (r), denotes the amount of energy carried by particle flux (convection), and
jU
α (r) denotes the net rate at which work is done by particles on the left of xα on the particles

on the right (conduction). The αth component of the integrated heat current density over the
solid region is

〈Iα〉 =
∑

i

〈 hiv
α
i 〉 − 1

4

∑

i, j 
=i

〈
∂u(ri j)

∂ri j

xα
i j x

β

i j

ri j
(v

β

i + v
β

j )

〉

. (4)

In this study we focus on the average heat current density along the y-direction, jE =
〈Iy〉/Lx Ls. We assume LTE and ignore conductance inside the solid [17]. Then assuming the
conductance of our present system to be simply proportional to that of a hard disc system with
an effective diameter σ , the heat conductance in units of (τsd)−1 can be expressed as

Gs = jE

�T
=

[
3

ρs

Ls

y2
c

τc

](
d

σ

)2

(5)

where ρs is the average density of the solid, yc is the average separation between the colliding
particles in the y-direction and τc is the mean collision time. The extra factor of (d/σ)2 is due
to the mapping of the soft discs of diameter d to effective hard discs of diameter σ .

We estimate y2
c and τc from the fixed-neighbour free-volume theory as in [17]. Briefly, we

assume that a (hard) test particle moves in the fixed cage formed by the average positions
of its neighbours and obtain the average values [y2

c ]fv from geometry and the timescale
[τc]fv = c

√
Vfv/kBT , where Vfv is the available free volume of the test particle moving with a

velocity derived from the temperature kBT . The effective hard disc diameter σ and the constant
c of O(1) are both treated as fitting parameters. Using kBT = 1, d/σ = 1.13 and c = 0.4
we obtain a fit to the Gs–μ curve with a layering transition from 22 to 23 layers near μ = 8.
The fitted result, depicted as the solid line in figure 2(b), is seen to reproduce most of the
qualitative features of the simulation results, especially the jump in conductance due to the
layering transition.
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5. Conclusions

We have shown that details of the structure have a measurable effect on the thermal properties
of the trapped solid lying in contact with its liquid. In this study, we were particularly interested
in exploring the impact of structural changes, namely the layering transitions, on heat transport.
One must, however, remember that the layering transition is a finite size effect [2], and it gets
progressively less sharp as one goes to very large channel widths. An important consequence
of this study is the possibility that the thermal resistance of interfaces may be altered using an
external potential which causes layering transitions in a trapped nanosolid. We have shown
that metastable dislocations drastically reduce the conductance of an otherwise defect-free
nanosized solid. Recently, electrical [18] and thermal [17] transport studies on confined solid
strips have also revealed strong signatures of such structural transitions due to imposed external
strain. We believe that these phenomena have the potential for useful applications, for example
as tunable thermal switches or in other nano-engineered devices.

We would like to thank Madan Rao, Abhishek Dhar, Tamoghna K Das, Kurt Binder, Andrea
Ricci and Peter Nielaba for discussions and Martin Zapotocky for a critical reading of the
manuscript. This work was partially supported by the Department of Science and Technology
and CSIR (India).
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